Large-scale simulation of vortex liquid pinning in high-temperature superconductors
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Motivation Model Geometry Simulation Software/algorithm stack
e Long-time integration

e Need to obtain reliable statistics on Jg independent of transient, fluctua-
tions

e Applications e Time-dependent Ginzburg-Landau e Magnetic vortices pinned by inclusions e Leveraging power of SciDAC Institutes

Superconducting cables and efficient energy delivery
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* Dissipative motion of disordered phenomenological parameters from microscopic theory vortex
arrays of magnetic field vortices (r) = TC(?_T 0 for T — T, (critical temperature) Parameters v and k are related to I', ag, b, € as well as

the fundamental coherence length £y and magnetic penetration length Ag. _
e Critical current enhanced by pinning

Y"1 A" are the approximations at time t,.1 being determined from (core solvers) Performance tuning
the approximations at ¢,

° Ext en si on s t o TDGL Critical current determined by long-time evolution of TDGL (to stationary flow) F A STM 3 th

Dominated by rare events of vortex depinning and avalanches Ap = (V+ iA)2 is the modified Laplace operator
Frequency and duration of pinning/depinning depends on configurations of inclusions S U P E R
Coupling to temperature diffusion Suitable pinning configurations must be determined using geometry optimization F z-n“ and F" are a splitting of the remaining nonlinear terms into implicit L
Effects of elastic strain and explicit parts A
Important both for applications and basic science
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Capture at the microlevel effects like penetration avalanches (macrosimulation below)
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Fully implicit methods correspond to F; = F, G; = G, F, = G, = 0 and

Understanding the behavior of complex driven systems
J J comp y generally enjoy the best stability properties.

Vortex matter:

 Lattice (low T) 2 Melt - Liquid (high T)

* Control vortex liquid “viscosity” to minimize dissipation via inclusions
Vortex “avalanches”

vortex creep Linearly implicit methods (with F; = G; A) have certain
regime advantages

vortex velocity (voltage)

vortex depinning Can be obtained as special cases of the general implicit method.
regime
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Scalability Sampling Data Analysis & Visualization

e Optimization of inclusion geometry

preferred maximum
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Convergence of time-step solve and scalability derives from properties of Ja- Determining optimal pinning landscape: L= B AN 2 O e \ Y . e A _ ‘
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At O(1B) sizes this linear system must be solved iteratively, and Krylov sub-
space methods are the modern scalable approach of choice. Convergence of | A
Krylov methods, however, crucially relies on the availability of an effective pre- w e Ny, €0, AW s % 7 American
conditioner. such that Je(0) = m}X{J Vo(J) < 0Ve(J)}, | | X | | § Experimental Superconductors,
heo — cd—04<d<d+046—0.<e< A y 0 Collaboration SuperPower

max Jo(0)

e physics-based preconditioning,

Objective function defined indirectly:
— combine effective preconditioners for (elliptic) diagonal blocks
e Each value result of long-time simulation
e nmultigrid
Must define optimal manufacturing parameters
— AMG
_ GMG Without derivative information wrt 6 = (d, e, g)

— appropriate treatment of the curl-culr operator Eventually adjoint obtained via AD of simulation algorithms

e domain-decomposition methods




