

Critical Current in Various Pinning Landscapes

Andreas Glatz¹, Igor Aronson¹, George Crabtree¹, Alexei Koshelev¹, Ivan Sadovsky¹, Dmitry Karpeev², Carolyn Phillips²

¹Materials Science Science Division, Argonne National Laboratory, Argonne, IL 60439, USA

²Mathematics and Computer Division, Argonne National Laboratory, Argonne, IL 60439, USA

GL model & Motivation

• Time-dependent Ginzburg-Landau

TDGL equations:

$$\frac{\partial \Psi}{\partial t} = -\frac{\delta \mathcal{F}_{GL}}{\delta \Psi^*} \,, \, \frac{\delta \mathcal{F}_{GL}}{\delta \mathbf{A}} = 0$$

In dimensionless units:

$$u(\partial_t + i\mu)\psi = \epsilon(\mathbf{r})\psi - |\psi|^2\psi + (\nabla - i\mathbf{A})^2\psi + \zeta(\mathbf{r}, t)$$

$$\kappa^2\nabla \times (\nabla \times \mathbf{A}) = \mathbf{J}_n + \mathbf{J}_s + \mathcal{I},$$

complex order parameter characterizing density of Cooper pairs vector potential for magnetic field

 $\epsilon(\mathbf{r}) = \frac{T_c(\mathbf{r}) - T}{T} \rightarrow 0$ for $T \rightarrow T_c$ (critical temperature)

Total current: $J=J_c+J_n$ $J = Im [\psi^*(\nabla - i\mathbf{A})\psi] - (\nabla \mu + \partial_t \mathbf{A})$

OSCon: Robust optimization of pinning & geometry for high

- critical currents and resulting energy applications
- Critical current determined by long-time evolution of TDGL (to
- stationary flow)
- Dominated by rare events of vortex depinning, avalanches, nucleation and splitting & reconnection
- Frequency and duration of pinning/depinning depends on
- configurations of inclusions

Suitable pinning configurations must be determined using geometry optimization

Modeling of pinning

• Here: Regular simulation grid (on GPUs)

T_c modulation: Inclusions and pinning

Inclusions and defects are modeled by T modulation -> corresponding to normal metallic pinning centers; spatial variation of e(r) (positive in the superconductor. negative in the defect] arbitrary geometry

on a regular grid

Example: regular 2D hole array with modulation of the linear coefficient $\epsilon(r)$, where T>T_c in the

Random spherical inclusions

2nd type of inclusions: insulators → modeled by zero-normalsupercurrent houndary conditions

- . Most appropriate on unstructured meshes (see poster 2)
- On regular meshes normal to mesh edges (in progress)

Critical currents for spherical (metallic) inclusions

Current-voltage characteristics for different inclusion concentrations (inclusions are randomly distributed in the simulation volume: the critical current is determined by a fraction of the corresponding free flux flow voltage

Instead of the concentration, the volume fraction and inclusion diameter are the two parameters characterizing the random spherical pinning landscape

Optimal critical current

Parallel fields

Experimental result: MoGe slap with parallel current and field I (current ε₀=6-8 nm λ=400nm thickness=100nm~168

Numerical realization

- Sample is discretized using a regular mesh of 512x128x32 grid points with mesh size of $\xi_0/2 \rightarrow$ realistic thickness
- Sample is periodic in x-direction Inclusions are modeled by a different low-T_ component
- 0-100 spherical inclusions with diameter $5\xi_0$ are randomly placed in the volume → average over different disorder realizations
- > A fixed constant current is applied in x-direction as well as a variable magnetic
- Simulation time: 25mill time steps for 100 field values

Helical motion & Reentrance

Magnetic field applied in parallel to the applied current No Lorentz force if vortices are

- straight Source for instabilities: impurities
- or thermal fluctuations Dense vortex lines help to "restabilize" the vortex lattice
- New discovery: a new periodically "rotating" vortex state appears at

ntermediate field strength having finite resistance Visualization using location

of inclusions and vortex detection results (see poster 3)

Competing defects

Commercial superconducting tane with nanorod inclusions is irradiated by heavy ions at 45 deg → understanding of the critical current depending on the angle of the external magnetic field

Simulation

Vortex configuration with

Nanorods & Irradiated columnar defects

Two new extensions to the main simulations code required: Arbitrary external magnetic field direction Rotation-symmetric (cylindrical) integration domain

Left: Experimental $J_c(\alpha)$ dependence. Right: Numerical $J_c(\alpha)$ dependence. Red (nanorods) and blue (nanorods + columnar defects) lines are calculated slightly below the matching field of the system.

- The effects from different defects are not additive Additional defects can simultaneously decrease the critical current at some directions of the magnetic field and increase it at other directions.
- The alignment of the dominant inclusions define peaks. In case of nanorods the peak of $J_r(\alpha)$ is observed at $\alpha = 0^{\circ}$ and in the case of dominating continuous columnar defects it is $\alpha = 45^{\circ}$.
- The peak at α = 0° decreases. The critical current in systems with nanorods is larger then the one in the system with nanorods and columnar defects at $\alpha = 0^{\circ}$. In the former case it is obvious that the pinning is bes as the defects a longest parallel to the vortices. On the other hand, continuous cylindrical inclusions allow
- vortices to move creating "rails" across the system. → Close to quantitative agreement of experimental results and explanation of the underlying mesoscopic mechanisms

